
Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 1 © Andrew Davison 2017

Part 4: Calc Modules

Chapter 27. Functions and Data Analysis

This chapter looks at how to utilize Calc's spreadsheet

functions directly from Java, and then examines four of

Calc's data analysis features: pivot tables, goal seeking,

and linear and nonlinear solving. There are two nonlinear

examples, one using the SCO solver, the using employing

DEPS.

1. Calling Calc Functions from Code

Calc comes with an extensive set of functions, which are described in Appendix B of

the Calc User Guide, available from https://www.libreoffice.org/get-

help/documentation/. The information is also online at

https://help.libreoffice.org/Calc/Functions_by_Category, organized into 11 categories:

1. Database: for extracting information from Calc tables, where the data is

organized into rows. The "Database" name is a little misleading, but the

documentation makes the point that Calc database functions have nothing to

do with Base databases. Chapter 13 of the Calc User Guide ("Calc as a

Simple Database") explains the distinction in detail.

2. Date and Time; e.g. see the EASTERSUNDAY function below

3. Financial: for business calculations;

4. Information: many of these return boolean information about cells, such as

whether a cell contains text or a formula;

5. Logical: functions for boolean logic;

6. Mathematical: trigonometric, hyperbolic, logarithmic, and summation

functions; e.g. see ROUND, SIN, and RADIANS below;

7. Array: many of these operations treat cell ranges like 2D arrays; e.g. see

TRANSPOSE below;

8. Statistical: for statistical and probability calculations; e.g., see AVERAGE and

SLOPE below;

9. Spreadsheet: for finding values in tables, cell ranges, and cells;

10. Text: string manipulation functions;

11. Add-ins: a catch-all category that includes a lot of functions – extra data and

time operations, conversion functions between number bases, more statistics,

and complex numbers. See IMSUM and ROMAN below for examples. The

"Add-ins" documentation starts at https://help.libreoffice.org/Calc/Add-

in_Functions, and continues in https://help.libreoffice.org/Calc/Add-

in_Functions,_List_of_Analysis_Functions_Part_One and

Topics: Calling Calc

Functions from Code;

Pivot Tables; Goal Seek;

Linear and Nonlinear

Solving (using SCO,

DEPS)

Example folders: "Calc

Tests" and "Utils"

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 2 © Andrew Davison 2017

https://help.libreoffice.org/Calc/Add-

in_Functions,_List_of_Analysis_Functions_Part_Two.

A different organization for the functions documentation is used at the OpenOffice

site

(https://wiki.openoffice.org/wiki/Documentation/How_Tos/Calc:_Functions_listed_b

y_category), and is probably easy to use when browsing/searching for a suitable

function.

If you know the name of the function, then a reasonably effective way of finding its

documentation is to search for "libreoffice calc function" + the function name.

The standard way of using these functions is, of course, inside cell formulae. But it's

also possible to call them from code via the XFunctionAccess interface.

XFunctionAccess only contains a single function, callFunction(), but it can be a bit

hard to use due to data typing issues.

Calc.callFun() creates an XFunctionAccess instance, and executes callFunction():

// in the Calc class

public static Object callFun(String funcName, Object[] args)

{

 try {

 XFunctionAccess fa =

 Lo.createInstanceMCF(XFunctionAccess.class,

 "com.sun.star.sheet.FunctionAccess");

 return fa.callFunction(funcName, args);

 }

 catch(Exception e)

 { System.out.println("Could not invoke \"" + funcName + "\"");

 return null;

 }

} // end of callFun()

public static Object callFun(String funcName, Object arg)

{ return callFun(funcName, new Object[]{arg}); }

Calc.callFun() is passed the Calc function name and an array of arguments; the

function's result is returned as an Object instance. The second version of

Calc.callFun() is for calling functions that accept a single argument.

Several examples of how to use Calc.callFun() can be found in the FunctionsTest.java

example:

// in FunctionsTest.java

public static void main(String[] argus)

{

 XComponentLoader loader = Lo.loadOffice();

 // round a double

 System.out.println("ROUND result for 1.999 is: " +

 Calc.callFun("ROUND", 1.999) + "\n");

 : // more examples, explained below

 Lo.closeOffice();

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 3 © Andrew Davison 2017

} // end of main()

The value passed to Calc.callFun() in the code above is an ordinary double, but Java

autoboxes it to become a Double object. This is passed to the second version of

Calc.callFun() which handles a single Object input argument.

The printed result is:

ROUND result for 1.999 is: 2.0

Java can be used to convert the returned Object value. For example, the value returned

by ROUND can be cast to a double:

double res = (Double) Calc.callFun("ROUND", 1.999);

The Object is cast to Double, and then Java unboxes the object, converting it to a

double.

Function calls can be nested, as in:

// in FunctionsTest.java

System.out.printf("SIN result for 30 degrees is: %.3f\n\n",

 Calc.callFun("SIN", Calc.callFun("RADIANS", 30)));

The call to RADIANS converts 30 degrees to radians. The returned Object is accepted

by the SIN function as input. The output is:

SIN result for 30 degrees is: 0.500

Many functions require more than one argument. In that case, the sequence of

arguments must be stored in an Object[] array before passing them to Calc.callFun().

For instance:

// in FunctionsTest.java

Object[] args = new Object[]{1, 2, 3, 4, 5}; // five args

double avg = (Double) Calc.callFun("AVERAGE", args);

System.out.println("Average of the numbers is: " +avg + "\n");

This reports the average to be 3.0.

When the Calc function documentation talks about an "array" or "matrix" argument,

then the data needs to be packaged as a 2D array. For example, the SLOPE function

takes two arrays of x and y coordinates as input, and calculates the slope of the line

through them. These two 1D arrays must be passed to Calc.callFun() as two 2D

arrays:

// in FunctionsTest.java

double[][] xData = {{1.0, 2.0, 3.0}};

 // a 2D array/matrix holding one row of data

double[][] yData = {{3.0, 6.0, 9.0}};

args = new Object[]{yData, xData};

double slope = (Double) Calc.callFun("SLOPE", args);

System.out.println("SLOPE of the line: " + slope + "\n");

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 4 © Andrew Davison 2017

The args array has to be built in stages so that the two arrays can be treated as two

Objects. The slope result is 3.0, as expected.

The functions in the "Array" category almost all use 2D arrays as arguments. For

example, the TRANSPOSE function is called like so:

// in FunctionsTest.java

// transpose a matrix

double[][] arr = {{1, 2, 3},{4, 5, 6}};

args = new Object[]{arr};

Object[][] transMat = (Object[][]) Calc.callFun("TRANSPOSE", args);

Calc.printArray(transMat);

The input array is in row-order, so the array arr created above has two rows and three

columns. The printed transpose is:

Row x Column size: 3 x 2

 1.0 4.0

 2.0 5.0

 3.0 6.0

Note that the result of this call to Calc.callFun() was not a double but a transposed 2D

array, which is why the Object result was cast to Object[][]. Unfortunately, Java's

typing does not allow the result to be cast to double[][]. The casting can be done using

Calc.convertToDoubles():

double[][] trans = Calc.convertToDoubles(transMat);

The TRANSPOSE function only takes a single argument, so it's possible to use the

second version of Calc.callFun() which takes a single Object input argument. A slight

problem is caused by Java's type system; it's necessary to explicitly cast the double[][]

array to Object in the call:

// in FunctionsTest.java

Object[][] transMat =

 (Object[][]) Calc.callFun("TRANSPOSE", (Object)arr);

If arr is not cast then Java will issue a runtime error.

There are several functions for manipulating imaginary numbers, which must be

written in the form of strings. For example, IMSUM sums a series of complex

numbers like so:

// in FunctionsTest.java

// sum two imaginary numbers: "13+4j" + "5+3j" returns 18+7j.

String[][] nums = {{"13+4j"},{"5+3j"}};

args = new Object[]{nums};

String sum = (String) Calc.callFun("IMSUM", args);

System.out.println("13+4j + 5+3j: "+ sum + "\n");

Since IMSUM expects a series of complex numbers, Calc.callFun() must be passed a

2D array. Each row contains a single string argument representing a complex number.

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 5 © Andrew Davison 2017

The summed complex number is returned as the string "18+7j". This means that the

Calc.callFun() result is cast to String in this case.

The IMSUM function is only processing a single argument, and so the single

argument version of Calc.callFun() can be called. As with the TRANSPOSE function

example, the String[][] array must be expicitly cast to an Object:

String sum = (String) Calc.callFun("IMSUM", (Object)nums);

Functions Help

If you can't access the Calc documentation on functions, then Calc.java contains two

help functions: Calc.getFunctionNames() and Calc.printFunctionInfo(). The former

prints a very long list of function names:

// in FunctionsTest.java

System.out.println("Function names");

Lo.printNames(Calc.getFunctionNames(), 6);

The output begins like so:

Function names

No. of names: 483

 "ABS" "ACCRINT" "ACCRINTM" "ACOS" "ACOSH" "ACOT"

 "ACOTH" "ADDRESS" "AGGREGATE" "AMORDEGRC" "AMORLINC" "AND"

 "ARABIC" "AREAS" "ASC" "ASIN" "ASINH" "ATAN"

 "ATAN2" "ATANH" "AVEDEV" "AVERAGE" "AVERAGEA" "AVERAGEIF"

 "AVERAGEIFS" "B" "BAHTTEXT" "BASE" "BESSELI" "BESSELJ"

 "BESSELK" "BESSELY" "BETA.DIST" "BETA.INV" "BETADIST" "BETAINV"

 "BIN2DEC" "BIN2HEX" "BIN2OCT" "BINOM.DIST" "BINOM.INV" "BINOMDIST"

 :

If you know a function name, then Calc.printFunctionInfo() will print details about it.

For instance, information about the ROMAN function is obtained like so:

Calc.printFunctionInfo("ROMAN");

The output is:

Properties for "ROMAN":

 Id: 383

 Category: 10

 Name: ROMAN

 Description: Converts a number to a Roman numeral.

 Arguments: [Lcom.sun.star.sheet.FunctionArgument;@b3fc9e

No. of arguments: 2

1. Argument name: Number

 Description: "The number to be converted to a Roman numeral must

be in the 0 - 3999 range."

 Is optional?: false

2. Argument name: Mode

 Description: "The more this value increases, the more the Roman

numeral is simplified. The value must be in the 0 - 4 range."

 Is optional?: true

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 6 © Andrew Davison 2017

This output states that ROMAN can be called with one or two arguments, the first

being a decimal, and the second an optional argument for the amount of

'simplification' carried out on the Roman numeral. For example, here are two ways to

convert 999 into Roman form:

// in FunctionsTest.java

String roman = (String) Calc.callFun("ROMAN", 999);

args = new Object[]{999, 4}; // use max simplification

String roman4 = (String) Calc.callFun("ROMAN", args);

System.out.println("999 in Roman numerals: "+

 roman + " or " + roman4 + "\n");

The output is:

999 in Roman numerals: CMXCIX or IM

Calc.getFunctionNames() and Calc.printFunctionInfo() utilize the

XFunctionDescriptions interface for retrieving an indexed container of function

descriptions. Each function description is an array of PropertyValue objects, which

contain a "Name" property. Calc.findFunction() uses this organization to return the

PropertyValue[] array for a given function name:

// in the Calc class

public static PropertyValue[] findFunction(String funcNm)

// get the function description properties for funcNm

{

 // get all the function descriptions

 XFunctionDescriptions funcsDesc =

 Lo.createInstanceMCF(XFunctionDescriptions.class,

 "com.sun.star.sheet.FunctionDescriptions");

 if (funcsDesc == null) {

 System.out.println("No function descriptions were found");

 return null;

 }

 // find the description whose fn name == funcNm

 int numFuncs = funcsDesc.getCount();

 for (int i = 0; i < numFuncs; i++) {

 try {

 PropertyValue[] props =

 (PropertyValue[]) funcsDesc.getByIndex(i);

 for (int p = 0; p < props.length; p++) {

 if ((props[p].Name.equals("Name")) &&

 (props[p].Value.equals(funcNm)))

 return props;

 }

 }

 catch(Exception e) {}

 }

 System.out.println("Function \"" + funcNm + "\" not found");

 return null;

} // end of findFunction()

The PropertyValue[] array contains five properties: "Name", "Description", "Id",

"Category", and "Arguments". The "Arguments" property stores an array of

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 7 © Andrew Davison 2017

FunctionArgument objects which contain information about each argument's name,

description, and whether it is optional. This information is printed by

Calc.printFunArguments():

// in the Calc class

public static void printFunArguments(PropertyValue[] propVals)

// print the function argument info in propVals

{

 // get the FunctionArgument property

 FunctionArgument[] fargs = (FunctionArgument[])

 Props.getValue("Arguments", propVals);

 if (fargs == null) {

 System.out.println("No arguments found");

 return;

 }

 // print all the info

 System.out.println("No. of arguments: " + fargs.length);

 for (int i=0; i < fargs.length; i++)

 printFunArgument(i, fargs[i]);

} // end of printFunArguments()

public static void printFunArgument(int i, FunctionArgument fa)

{

 System.out.println((i+1) + ". Argument name: " + fa.Name);

 System.out.println(" Description: \"" + fa.Description + "\"");

 System.out.println(" Is optional?: " + fa.IsOptional + "\n");

} // end of printFunArgument()

Calc.printFunctionInfo() calls Calc.findFunction() and Calc.printFunArguments() to

report on a complete function:

// in the Calc class

public static void printFunctionInfo(String funcName)

{

 PropertyValue[] propVals = findFunction(funcName);

 Props.showProps(funcName, propVals);

 printFunArguments(propVals);

 System.out.println();

} // end of printFunctionInfo()

2. Pivot Tables

Pivot tables are explained in detail in chapter 8 of the Calc User's Guide. They allow a

user to view a spreadsheet consisting of columns of data in a variety of table formats,

thereby highlighting the relationships between the columns. For example, Figure 1

shows the small spreadsheet in my "pivottable1.ods".

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 8 © Andrew Davison 2017

Figure 1. The "pivottable1.ods" Spreadsheet.

The spreadsheet uses a database-like organization, with each row acting as a record,

and each column is a different type/kind of information. This formatting style is

described in chapter 13 "Calc as a Simple Database" in the User Guide.

The drawback of this kind of data structuring is that it can be difficult to see the

underlying relationships between the columns; this is where pivot tables can help.

For example, a pivot table can be generated showing how the "Category" column

affects "Revenue (see Figure 2).

Figure 2. "Category" Affecting "Revenue".

Note that the pivot table shows the revenue sum in column B, since several revenue

entries in the original sheet are covered by each category.

Alternatively, it's possible to see how "Period" and "Category" interact to affect the

revenue, as in Figure 3.

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 9 © Andrew Davison 2017

Figure 3. Period and Category Affect on "Revenue".

The ordering of the "Period" values can be changed by clicking on the arrow next to

the "Period" text in cell "A2", then selecting a custom sort (e.g. Jan, Feb, Mar, etc.).

The "Total Result" row and column are added automatically, and can be changed

easily. It's also possible to change the way that the revenue data is grouped (e.g. it can

be averaged instead of being summed).

Pivot tables are straightforward to create and modify via Calc's GUI, starting from the

Data  Pivot Table  Create menu item. Calc automatically selects all the cells used

in the database-like table like the one in Figure 1, and displays the layout dialog

shown in Figure 4.

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 10 © Andrew Davison 2017

Figure 4. The Pivot Table Layout GUI.

The right-most "Available Fields" list contains the names of the columns in the sheet,

while the other four fields (Page, Column, Row, and Data) are empty. Figure 4 shows

a bug in the current version of the Pivot Table GUI – the addition of a "Data" name in

the "Column" fields list. This name cannot be removed from the layout dialog, but can

be ignored since it doesn't appear in the rendered pivot table.

The pivot table layout in Figure 5 is easily created by dragging the "Period" name to

the Row fields list, "Category to the Column fields list, and "Revenue" to the Data

fields list, where it's converted into "Sum – Revenue".

Figure 5. The Layout for the Pivot Table in Figure 3.

Pivot Tables in the API

The Calc API refers to pivot tables by their old Office name, DataPilot tables. The

relationships between the DataPilotservices and interfaces are shown in Figure 6.

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 11 © Andrew Davison 2017

Figure 6. The DataPilot Services and Interfaces.

Figure 6 is best understood by reading downwards: a DataPilotTables service (note

the "s") is a sequence of DataPilotTable services. Each table contains a

DataPilotFields service (note the "s") which manages a sequence of DataPilotField

objects.

Each DataPilotField is a named property set, representing a column in the source

sheet. For example, in the following code, four pilot fields will be created for the

"pivottable1.ods" sheet shown in Figure 1, one each for the columns named Year,

Period, Category, and Revenue.

Figure 6 mentions one of the more important services – DataPilotDescriptor, which

does the hard work of converting sheet columns into pilot fields. DataPilotDescriptor

is also responsible for assigning each pilot field to one of the Page, Column, Row, or

Data field lists.

The PivotSheet1.java example illustrates how to create the pivot table shown in

Figure 3. The program begins by opening the "pivottable1.ods" file (Figure 1):

// in PivotSheet1.java

public static void main(String args[])

{

 XComponentLoader loader = Lo.loadOffice();

 XSpreadsheetDocument doc =

 Calc.openDoc("pivottable1.ods", loader);

 if (doc == null) {

 System.out.println("Could not open pivottable1.ods");

 Lo.closeOffice();

 return;

 }

 GUI.setVisible(doc, true);

 XSpreadsheet sheet = Calc.getSheet(doc, 0);

 XSpreadsheet dpSheet =

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 12 © Andrew Davison 2017

 Calc.insertSheet(doc, "Pivot Table", (short)1);

 createPivotTable(sheet, dpSheet);

 Calc.setActiveSheet(doc, dpSheet);

 Lo.saveDoc(doc, "pivotExample1.ods");

 Lo.waitEnter();

 Lo.closeDoc(doc);

 Lo.closeOffice();

} // end of main()

A second sheet (called dpSheet) is created to hold the generated pivot table, and

createPivotTable() is called:

// in PivotSheet1.java

private static void createPivotTable(

 XSpreadsheet sheet, XSpreadsheet dpSheet)

{

 XCellRange cellRange = Calc.findUsedRange(sheet);

 // find the table data on the sheet

 XDataPilotTables dpTables = Calc.getPilotTables(sheet);

 /* create a new pilot descriptor which will later be added

 as a new pilot table to the pilot tables */

 XDataPilotDescriptor dpDesc =

 dpTables.createDataPilotDescriptor();

 /* add the sheet's column data to the descriptor;

 this causes the creation of pilot fields */

 dpDesc.setSourceRange(Calc.getAddress(cellRange));

 /* assign "Available" (Hidden) pilot fields to the

 Page, Column, Row, and Data fields

 */

 XIndexAccess fields = dpDesc.getHiddenFields();

 XPropertySet props;

 // set Page field; not used here

 //props = Lo.findContainerProps(fields, "Year");

 //Props.setProperty(props, "Orientation",

 // DataPilotFieldOrientation.PAGE);

 // set Column field

 props = Lo.findContainerProps(fields, "Category");

 Props.setProperty(props, "Orientation",

 DataPilotFieldOrientation.COLUMN);

 // set Row field

 props = Lo.findContainerProps(fields, "Period");

 Props.setProperty(props, "Orientation",

 DataPilotFieldOrientation.ROW);

 // set Data field, calculating the sum

 props = Lo.findContainerProps(fields, "Revenue");

 Props.setProperty(props, "Orientation",

 DataPilotFieldOrientation.DATA);

 Props.setProperty(props, "Function", GeneralFunction.SUM);

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 13 © Andrew Davison 2017

 // add new pivot table to other tables and to sheet at A1

 CellAddress destAddr = Calc.getCellAddress(dpSheet, "A1");

 dpTables.insertNewByName("PivotTableExample", destAddr, dpDesc);

} // end of createPivotTable()

All the sheet's data is selected by calling Calc.findUsedRange(). Then

Calc.getPilotTables() obtains the DataPilotTables service:

// in the Calc class

public static XDataPilotTables getPilotTables(XSpreadsheet sheet)

{

 XDataPilotTablesSupplier dpSupp =

 Lo.qi(XDataPilotTablesSupplier.class, sheet);

 XDataPilotTables dpTables = dpSupp.getDataPilotTables();

 if (dpTables == null)

 System.out.println("No data pilot tables found");

 return dpTables;

} // end of getPilotTables()

Calc.getPilotTables() utilizes the XDataPilotTablesSupplier interface of the

Spreadsheet service to obtain the DataPilotTables service.

PivotSheet1.java's task is to create a new pilot table, which it does indirectly by

creating a new pilot description. After this pilot description has been initialized, it will

be added to the DataPilotTables service as a new pilot table

An empty pilot description is created by calling

XDataPilotTables.createDataPilotDescriptor():

// in createPivotTable in PivotTable.java

XDataPilotTables dpTables = Calc.getPilotTables(sheet);

XDataPilotDescriptor dpDesc = dpTables.createDataPilotDescriptor();

The new XDataPilotDescriptor reference (dpDesc) creates a pilot table by carrying

out two tasks – loading the sheet data into the pilot table, and assigning the resulting

pilot fields to the Page, Column, Row, and Data fields in the descriptor. This latter

task is similar to what the Calc user does in the GUI's layout window in Figure 5.

The descriptor is assigned a source range that spans all the data:

dpDesc.setSourceRange(Calc.getAddress(cellRange));

It converts each detected column into a DataPilotField service, which is a named

property set; the name is the column heading.

These pilot fields are conceptually stored in the "Available Fields" list shown in the

layout window in Figure 5, and are retrieved by calling

XDataPilotDescriptor.getHiddenFields():

XIndexAccess fields = dpDesc.getHiddenFields();

It's useful to list the names of these pilot fields:

// in createPivotTable() in PivotSheet1.java

String[] fieldNames = Lo.getContainerNames(fields);

System.out.println("Field Names (" + fieldNames.length + "):");

for(String name : fieldNames)

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 14 © Andrew Davison 2017

 System.out.println(" " + name);

The output for the spreadsheet in Figure 1 is:

Field Names (5):

 Year

 Period

 Category

 Revenue

 Data

This list includes the strange "Data" pilot field which you may remember also

cropped up in the layout window in Figure 4.

The second task is to assign selected pilot fields to the Page, Column, Row, and Data

field lists. The standard way of doing this is illustrated below for the case of assigning

the "Category" pilot field to the Column field list:

// in createPivotTable() in PivotSheet1.java

XPropertySet props = Lo.findContainerProps(fields, "Category");

Props.setProperty(props, "Orientation",

 DataPilotFieldOrientation.COLUMN);

The fields variable refers to all the pilot fields as an indexed container.

Lo.findContainerProps() searches through that container looking for the specified

field name.

// in the Lo class

public static XPropertySet findContainerProps(

 XIndexAccess con, String nm)

{ if (con == null) {

 System.out.println("Container is null");

 return null;

 }

 for (int i=0; i < con.getCount(); i++) {

 try {

 Object oElem = con.getByIndex(i);

 XNamed named = Lo.qi(XNamed.class, oElem);

 if (named.getName().equals(nm)) {

 return (XPropertySet) Lo.qi(XPropertySet.class, oElem);

 }

 }

 catch(Exception e)

 { System.out.println("Could not access element " + i); }

 }

 System.out.println("Could not find a \"" + nm + "\" prop set");

 return null;

} // end of findContainerProps()

The returned property set is an instance of the DataPilotField service, so a complete

list of all the properties can be found in its documentation (use lodoc

datapilotfield).

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 15 © Andrew Davison 2017

The important property for our needs is "Orientation" which can be assigned a

DataPilotFieldOrientation constant, whose values are HIDDEN, COLUMN, ROW,

PAGE, and DATA, representing the field lists in the layout window.

Once the required pilot fields have been assigned to field lists, the new pivot table is

added to the other tables and to the sheet by calling

XDataPilotTables.insertNewByName(). It takes three arguments: a unique name for

the table, the cell address where the table will be drawn, and the completed pilot

descriptor:

// in createPivotTable() in PivotSheet1.java

// add new pivot table to other tables and to sheet at A1

CellAddress destAddr = Calc.getCellAddress(dpSheet, "A1");

dpTables.insertNewByName("PivotTableExample", destAddr, dpDesc);

This code should mark the end of the createPivotTable() method, but I found that

more complex pivot tables would often not be correctly drawn. The cells in the Data

field would be left containing the word "#VALUE!". This problem can be fixed by

explicitly requesting a refresh of the pivot table, using:

// in createPivotTable() in PivotSheet1.java

// access pilot tables

XDataPilotTables dpTables2 = Calc.getPilotTables(dpSheet);

// find new table by name

XDataPilotTable dpTable =

 Calc.getPilotTable(dpTables2, "PivotTableExample");

if (dpTable != null)

 dpTable.refresh(); // update the table entries

Calc.getPilotTable() searches XDataPilotTables, which is a named container of

XDataPilotTable objects.

Oddly enough, it's not enough to call Calc.getPilotTable() on the current

XDataPilotTables reference (called dpTables in createPivotTable()), since the new

pivot table isn't found.

My "Calc Tests" folder contains two more pivot table examples, called

PivotSheet2.java and PivotTable.java. PivotSheet2.java creates a more complex pivot

table after reading in the spreadsheet stored in pivottable2.ods. PivotTable.java

creates its own spreadsheet before generating a table. Both examples only use the

methods in PivotSheet1.java, so won't be described here.

3. Seeking a Goal

The Tools  Goal Seek menu item in Calc allows a formula to be executed

'backwards'. Instead of supplying the input to a formula, and obtaining the formula's

result, the result is given and "goal seek" works backwards through the formula to

calculate the value that produces the result.

The GoalSeek.java example contains several uses of "goal seeking". It begins like so:

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 16 © Andrew Davison 2017

// in GoalSeek.java

public static void main(String args[])

{

 XComponentLoader loader = Lo.loadOffice();

 XSpreadsheetDocument doc = Calc.createDoc(loader);

 if (doc == null) {

 System.out.println("Document creation failed");

 Lo.closeOffice();

 return;

 }

 XSpreadsheet sheet = Calc.getSheet(doc, 0);

 XGoalSeek gs = Lo.qi(XGoalSeek.class, doc);

 Calc.setVal(sheet, "C1", 9); // x-variable and starting value

 Calc.setVal(sheet, "C2", "=SQRT(C1)"); // formula

 double x = Calc.goalSeek(gs, sheet, "C1", "C2", 4);

 // x-var, formula, result

 System.out.println("x == " + x + " when sqrt(x) == 4\n");

 // x is 16

 : // more goal seek examples

 Lo.closeDoc(doc);

 Lo.closeOffice();

} // end of main()

Goal seek functionality is accessed via the XGoalSeek interface of the document.

Also, a spreadsheet is needed to hold an initial guess for the input value being

calculated (which I'll call the x-variable), and for the formula. In the example above,

the x-variable is stored in cell "C1" with an initial value of 9, and its formula (sqrt(x))

in cell "C2".

Calc.goalSeek() is passed the cell names of the x-variable and formula, and the

formula's result, and returns the x-value that produces that result. In the example

above, Calc.goalSeek() returns 16, because that's the input to sqrt() that results in 4.

Calc.goalSeek() is defined as:

// in the Calc class

public static double goalSeek(XGoalSeek gs, XSpreadsheet sheet,

 String xCellName, String formulaCellName, double result)

// find x input to formula which produces result;

// use value in xCellName as a starting guess

{

 CellAddress xPos = Calc.getCellAddress(sheet, xCellName);

 CellAddress formulaPos =

 Calc.getCellAddress(sheet, formulaCellName);

 GoalResult goalResult = gs.seekGoal(formulaPos, xPos, ""+result);

 if (goalResult.Divergence >= 0.1)

 System.out.println("NO result; divergence: " +

 goalResult.Divergence);

 return goalResult.Result;

} // end of goalSeek()

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 17 © Andrew Davison 2017

The heart of Calc.goalSeek() is a call to XGoalSeek.seekGoal() which requires three

arguments: the address of the x-variable cell, the address of the formula cell, and a

string representing the formula's result. The call returns a GoalResult object that

contains two fields: Result holds the calculated x-value, and Divergence measures the

accuracy of the x-value. If the goal seek has succeeded, then the Divergence value

should be very close to 0; if it failed to find an x-value then Divergence may be very

large since it measures the amount the x-value changed in the last iteration of the

"goal seek" algorithm.

I wasn't able to find out what algorithm "goal seek" employs, but it's most likely a

root-finding methods, such as Newton–Raphson or the secant method. These may fail

for a poor choice of starting x-value or if the formula function has a strange derivative

(an odd curvature). This can be demonstrated by asking "goal seek" to look for an

impossible x-value, such as the input that makes sqrt(x) == -4:

// in GoalSeek.java

x = Calc.goalSeek(gs, sheet, "C1", "C2", -4);

System.out.println("x == " + x + " when sqrt(x) == -4\n");

There's no need to change the starting value in "C1" or the formula in "C2". The

output is:

NO result; divergence: 1.7976931348623157E308

x == 3.2462079627414548E-6 when sqrt(x) == -4

"Goal seek" can be useful when examining complex equations, such as:

What's the x-value that produces y == 2?

Actually, this equation is simple: is factorized into , and the

common factor removed from the fraction; the equation becomes:

So when y == 2, x will be 1. But let's do things the number-crunching way, and

supply the original formula to "goal seek":

// in GoalSeek.java

Calc.setVal(sheet, "D1", 0.8); // x-variable and starting value

Calc.setVal(sheet, "D2", "=(D1^2 - 1)/(D1 - 1)"); // formula

x = Calc.goalSeek(gs, sheet, "D1", "D2", 2);

System.out.println("x == " + x + " when x+1 == 2\n");

The printed x-value is: 1.0000000000000053.

If a formula requires numerical values, they can be supplied as cell references, which

allows them to be adjusted easily. The next "goal seek" example employs an annual

interest formula, I = x*n*i, where I is the annual interest, x the capital, n the number

of years, and i the interest rate. As usual, the x-variable has a starting value in a cell,

but n and i are also represented by cells so that they can be changed. The code is:

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 18 © Andrew Davison 2017

// in GoalSeek.java

Calc.setVal(sheet, "B1", 100000); // x-variable; possible value

Calc.setVal(sheet, "B2", 1); // n, no. of years

Calc.setVal(sheet, "B3", 0.075); // i, interest rate (7.5%)

Calc.setVal(sheet, "B4", "=B1*B2*B3"); // formula

x= Calc.goalSeek(gs, sheet, "B1", "B4", 15000);

System.out.println("x == " + x + " when x*" +

 Calc.getVal(sheet, "B2") + "*" + Calc.getVal(sheet, "B3") +

 " == 15000\n"); // x is 200,000

"Goal seek" is being asked to determine the x-value when the annual return from the

formula is 20000. The values in the cells "B2" and "B3" are employed, and the printed

answer is:

x == 200000.0 when x*1.0*0.075 == 15000

4. Linear and Nonlinear Solving

Calc supports both linear and nonlinear programming via its Tools  Solver menu

item. The name "linear programming" dates from just after World War II, and doesn't

mean programming in the modern sense; in fact, it's probably better to use its other

common name, "linear optimization".

Linear optimization starts with a series of linear equations involving inequalities, and

finds the best numerical values that satisfy the equations according to a 'profit'

equation that must be maximized (or minimized). Fortunately, this has a very nice

graphical representation when the equations only involve two unknowns: the

equations cam be drawn as lines crossing the x- and y- axes, and the best values will

be one of the points where the lines intersect.

As you might expect, nonlinear programming (optimization) is a generalization of the

linear case where some of the equations are non-linear (e.g. perhaps they involve

polynomials, logarithmic, or trigonometric functions).

A gentle introduction to linear optimization and its graphing can be found at

http://www.purplemath.com/modules/linprog.htm, or you can start at the Wikipedia

page, https://en.wikipedia.org/wiki/Linear_programming.

The Calc documentation on linear and nonlinear solving is rather minimal. There's no

mention of it in the Calc Developer's Guide, and just a brief section on its GUI at the

end of chapter 9 ("Data Analysis") of the Calc User guide.

The current version of LibreOffice (v. 5) offers four optimization tools (called

solvers) – two linear optimizers called "LibreOffice Linear Solver" and "LibreOffice

CoinMP Linear Solver", and two nonlinear ones called "DEPS Evolutionary

Algorithm" and "SCO Evolutionary Algorithm". The easiest way of checking the

current solver situation in your version of Office is to look at Calc's Solver dialog

window (by clicking on the Tools  Solver menu item), and click on the "Options"

button. The options dialog window lists all the installed solvers, and their numerous

parameters, as in Figure 8.

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 19 © Andrew Davison 2017

Figure 8. The LibreOffice Solvers and their Parameters.

Another way of getting a list of the installed solvers, is to call Calc.listSolvers(),

which is demonstrated in the first example given below.

The two linear solvers are implemented as DLLs, located in the <OFFICE>\program

folder as lpsolve55.dll and CoinMP.dll. The source code for these libraries is online,

at https://docs.libreoffice.org/sccomp/html/files.html, with the code (and graphs of the

code) accessible via the "Files" tab. The file names are LpsolveSolver.cxx and

CoinMPSolver.cxx.

The lpsolve55.dll filename strongly suggests that Office's basic linear solver is

lp_solve 5.5, which originates online at http://lpsolve.sourceforge.net/. That site has

extensive documentation, including a great introduction to linear optimization. The

first programming example below comes from one of the examples in its

documentation. One interesting possibility for the lpsolve library is that it can be

called directly from Java without the need for Calc. The necessary steps are described

on the "Using lp_solve 5.5 in Java programs" page for lp_solve 5.5 at

http://lpsolve.sourceforge.net/. The relevant download is lp_solve_5.5.2.0_java.zip

from http://sourceforge.net/projects/lpsolve/files/lpsolve/5.5.2.0/.

Office's other linear optimizer, the CoinMP solver, comes from the COIN-OR

(Computational Infrastructure for Operations Research) open-source project which

started at IBM research (http://www.coin-or.org/). According to http://www.coin-

or.org/projects/CoinMP.xml, CoinMP implements most of the functionality of three

other COIN-OR projects, called CLP (Coin LP), CBC (Coin Branch-and-Cut), and

CGL (Cut Generation Library). The CLP and CBC solvers are documented at

http://www.coin-or.org/projects/Clp.xml and http://www.coin-

or.org/projects/Cbc.xml, and come with large user guides, at http://www.coin-

or.org/Clp/userguide/ and http://www.coin-or.org/Cbc/. The collection of cut

generators in the CGL library is used to speed up the execution of CLP and CBC (see

http://www.coin-or.org/projects/Cgl.xml).

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 20 © Andrew Davison 2017

A good overview of COIN-OR can be found in a series of slides by Matthew

Saltzman at http://dimacs.rutgers.edu/Workshops/COIN/slides/saltzman.pdf. There's

also a Wikipedia page about COIN-OR.

The two nonlinear solvers are known as DEPS and SCO for short, and are explained

in the OpenOffice wiki at https://wiki.openoffice.org/wiki/NLPSolver, along with

descriptions of their extensive (and complicated) parameters. They're implemented as

JAR files, located in <OFFICE>\share\extensions\nlpsolver as nlpsolver.jar and

EvolutionarySolver.jar. Two of the examples below use these solvers.

4.1. A Linear Optimization Problem

The LinearSolverTest.java example shows how to use the basic linear solver, and also

CoinMP. It implements the following linear optimization problem, which comes from

http://lpsolve.sourceforge.net/5.1/formulate.htm. There are three constraint

inequalities:

120x + 210y ≤ 15000

110x + 30y ≤ 4000

x + y ≤ 75

The 'profit' expression to be maximized is:

P = 143x + 60y

The maximum P value is 6315.625, when x == 21.875 and y == 53.125. Perhaps the

easiest way of calculating this outside of Office is via the linear optimization tool at

http://www.zweigmedia.com/utilities/lpg/index.html?lang=en. Its solution is shown in

Figure 9.

Figure 9. Solved and Graphed Linear Optimization Problem.

Aside from giving the answer, the equations are graphed, which shows how the

maximum profit is one of the equation's intersection points.

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 21 © Andrew Davison 2017

The main() function for LinearSolverTest.java:

// in LinearSolverTest.java

public static void main(String args[])

{

 XComponentLoader loader = Lo.loadOffice();

 XSpreadsheetDocument doc = Calc.createDoc(loader);

 if (doc == null) {

 System.out.println("Document creation failed");

 Lo.closeOffice();

 return;

 }

 XSpreadsheet sheet = Calc.getSheet(doc, 0);

 Calc.listSolvers();

 // specify the variable cells

 CellAddress xPos = Calc.getCellAddress(sheet, "B1"); // x

 CellAddress yPos = Calc.getCellAddress(sheet, "B2"); // y

 CellAddress[] vars = new CellAddress[]{ xPos, yPos };

 // specify profit equation

 Calc.setVal(sheet, "B3", "=143*B1 + 60*B2");

 // P = 143x + 60y, maximize

 CellAddress profitEqu = Calc.getCellAddress(sheet, "B3");

 // set up equation formulae without inequalities

 Calc.setVal(sheet, "B4", "=120*B1 + 210*B2");

 Calc.setVal(sheet, "B5", "=110*B1 + 30*B2");

 Calc.setVal(sheet, "B6", "=B1 + B2");

 // create the constraints

 // constraints are equations and their inequalities

 SolverConstraint sc1 =

 Calc.makeConstraint(sheet, "B4","<=", 15000);

 // 120x + 210y <= 15000

 // B4 is the cell address that is constrained

 SolverConstraint sc2 =

 Calc.makeConstraint(sheet, "B5", "<=", 4000);

 // 110x + 30y <= 4000

 SolverConstraint sc3 =

 Calc.makeConstraint(sheet, "B6", "<=", 75);

 // x + y <= 75

 SolverConstraint[] constraints =

 new SolverConstraint[]{ sc1, sc2, sc3 };

 // initialize the linear solver (basic linear or CoinMP)

 XSolver solver = Lo.createInstanceMCF(XSolver.class,

 "com.sun.star.comp.Calc.LpsolveSolver");

 // "com.sun.star.comp.Calc.CoinMPSolver");

 // System.out.println("Solver: " + solver);

 solver.setDocument(doc);

 solver.setObjective(profitEqu);

 solver.setVariables(vars);

 solver.setConstraints(constraints);

 solver.setMaximize(true);

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 22 © Andrew Davison 2017

 Props.showObjProps("Solver", solver);

 Props.setProperty(solver, "NonNegative", true);

 // restrict the search to the top-right quadrant of the graph

 // execute the solver; print the result

 solver.solve();

 Calc.solverReport(solver);

 Lo.closeDoc(doc);

 Lo.closeOffice();

} // end of main()

The call to Calc.listSolvers() isn't strictly necessary but it provides useful information

about the names of the solver services:

Services offered by the solver:

 com.sun.star.comp.Calc.CoinMPSolver

 com.sun.star.comp.Calc.LpsolveSolver

 com.sun.star.comp.Calc.NLPSolver.DEPSSolverImpl

 com.sun.star.comp.Calc.NLPSolver.SCOSolverImpl

One of these names is needed when calling Lo.createInstanceMCF() to create a solver

instance.

Calc.listSolvers() is implemented as:

// in the Calc class

public static void listSolvers()

{

 System.out.println("Services offered by the solver:");

 String[] nms = Info.getServiceNames("com.sun.star.sheet.Solver");

 if (nms == null)

 System.out.println(" none");

 else {

 for(String service : nms)

 System.out.println(" " + service);

 System.out.println();

 }

} // end of listSolvers()

The real work of listSolvers() is done by calling Info.getServiceNames() which finds

all the implementations that support "com.sun.star.sheet.Solver".

Back in LinearSolverTest.java, the inequality and profit equations are defined as

formulae in a sheet, and the variables in the equations are also assigned to cells.

The two variables in this problem (x and y) are assigned to the cells "B1" and "B2",

and the cell addresses are stored in an array for later:

// in LinearSolverTest.java

CellAddress xPos = Calc.getCellAddress(sheet, "B1"); // x

CellAddress yPos = Calc.getCellAddress(sheet, "B2"); // y

CellAddress[] vars = new CellAddress[]{ xPos, yPos };

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 23 © Andrew Davison 2017

Next the equations are defined. Their formulae are assigned to cells without their

inequality parts:

// in LinearSolverTest.java

// specify profit equation

Calc.setVal(sheet, "B3", "=143*B1 + 60*B2");

 // P = 143x + 60y, maximize

CellAddress profitEqu = Calc.getCellAddress(sheet, "B3");

// set up equation formulae without inequalities

Calc.setVal(sheet, "B4", "=120*B1 + 210*B2");

Calc.setVal(sheet, "B5", "=110*B1 + 30*B2");

Calc.setVal(sheet, "B6", "=B1 + B2");

Now the three equation formulae are converted into SolverConstraint objects by

calling Calc.makeConstraint(), and the constraints are stored in an array for later use:

// in LinearSolverTest.java

// create the constraints:

// constraints are equations and their inequalities

SolverConstraint sc1 =

 Calc.makeConstraint(sheet, "B4","<=", 15000);

 // 120x + 210y <= 15000

 // B4 is the cell address that is constrained

SolverConstraint sc2 =

 Calc.makeConstraint(sheet, "B5", "<=", 4000);

 // 110x + 30y <= 4000

SolverConstraint sc3 =

 Calc.makeConstraint(sheet, "B6", "<=", 75);

 // x + y <= 75

SolverConstraint[] constraints =

 new SolverConstraint[]{ sc1, sc2, sc3 };

A constraint is the cell name where an equation is stored and an inequality.

Calc.makeConstraint() is defined as:

// in the Calc class

public static SolverConstraint makeConstraint(

 XSpreadsheet sheet, String cellName,

 String op, double d)

{ return makeConstraint(Calc.getCellAddress(sheet, cellName),op,d); }

public static SolverConstraint makeConstraint(

 CellAddress addr, String op, double d)

{ return makeConstraint(addr, toConstraintOp(op), d); }

public static SolverConstraint makeConstraint(

 XSpreadsheet sheet, String cellName,

 SolverConstraintOperator op, double d)

{ return makeConstraint(Calc.getCellAddress(sheet, cellName),op,d);}

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 24 © Andrew Davison 2017

public static SolverConstraint makeConstraint(CellAddress addr,

 SolverConstraintOperator op, double d)

{ SolverConstraint sc = new SolverConstraint();

 sc.Left = addr;

 sc.Operator = op;

 sc.Right = d;

 return sc;

} // end of makeConstraint()

That's a lot of functions to create a SolverConstraint object with four arguments.

Now the solver is created, and its parameters are set:

// in LinearSolverTest.java

XSolver solver = Lo.createInstanceMCF(XSolver.class,

 "com.sun.star.comp.Calc.LpsolveSolver");

solver.setDocument(doc);

solver.setObjective(profitEqu);

solver.setVariables(vars);

solver.setConstraints(constraints);

solver.setMaximize(true); // maximize the profit equ

The XSolver interface is utilized by all the solvers, but the name of service can vary.

In the code above I'm using the basic linear solver. A CoinMP solver would be

created by changing "LpsolveSolver" to "CoinMPSolver":

XSolver solver = Lo.createInstanceMCF(XSolver.class,

 "com.sun.star.comp.Calc.CoinMPSolver");

The various "set" methods are described in the XSolver documentation as public

variables (call lodoc xsolver to see the page). They load the profit equation,

constraints, and variables into the solver. It's also necessary to specify that the profit

equation be maximized, and link the solver to the Calc document.

These "set" methods are used in the same way no matter which of the four solvers is

employed. Where the solvers differ is in their service properties. As mentioned above,

there's a few sources of online information depending on which solver you're using, or

you could look at the options dialog window shown in Figure 8.

Another source is to call Props.showObjProps() on the solver, to list its property

names and current values:

Props.showObjProps("Solver", solver);

When the basic linear solver is being used, showObjProps()'s output is:

EpsilonLevel == 0

Integer == false

LimitBBDepth == true

NonNegative == false

Timeout == 100

This corresponds to the information shown for the basic linear solver in the options

dialog in Figure 10.

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 25 © Andrew Davison 2017

Figure 10. The Options Dialog for the Basic Linear Solver.

As to what these parameters actually mean, you'll have to look through the "lp_solve

API reference" section of the documentation at http://lpsolve.sourceforge.net/. For

example, the "epsilon level" is partly explained under the sub-heading "set_epslevel".

The only property I've changed in the LinearSolverTest.java example is

"NonNegative", which is set to true:

// in LinearSolverTest.java ...

Props.setProperty(solver, "NonNegative", true);

This restricts the search for intersection points to the top-right quadrant of the graph.

Alternatively I could have implemented two more constraints:

x ≥ 0

y ≥ 0

The solver's results are printed by Calc.solverReport():

// in LinearSolverTest.java

solver.solve();

Calc.solverReport(solver);

The output:

Solver result:

 B3 == 6315.6250

Solver variables:

 B1 == 21.8750

 B2 == 53.1250

Calc.solverReport() is implemented as:

// in the Calc class

public static void solverReport(XSolver solver)

{

 boolean isSuccessful = solver.getSuccess();

 if (isSuccessful) {

 String cellName = getCellStr(solver.getObjective());

 System.out.println("Solver result: ");

 System.out.printf(" %s == %.4f\n", cellName,

 solver.getResultValue());

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 26 © Andrew Davison 2017

 CellAddress[] addrs = solver.getVariables();

 double[] solns = solver.getSolution();

 System.out.println("Solver variables: ");

 for (int i=0; i < solns.length; i++) {

 cellName = getCellStr(addrs[i]);

 System.out.printf(" %s == %.4f\n", cellName, solns[i]);

 }

 System.out.println();

 }

 else

 System.out.println("Solver FAILED");

} // end of solverReport()

XSolver.getObjective() and XSolver.getVariables() return the cell addresses holding

the profit equation and the variables (x and y). In a corresponding fashion,

XSolver.getResultValue() and XSolver.getSolution() return the calculated values for

the profit equation and variables.

A solver may fail, and so solverReport() first calls XSolver.getSuccess().

4.2. Another Linear Problem (using SCO)

I've coded two examples using the nonlinear optimizers – SolverTest.java utilizes the

SCO solver, and SolverTest2.java employs DEPS. As I mentioned earlier, these two

solvers are explained at https://wiki.openoffice.org/wiki/NLPSolver.

The SolverTest.java example solves a linear problem, but one involving three

unknowns. This means that graphically the equations define planes in a 3D space, and

solving the profit equation involves examining the corners of the volume defined by

how the planes intersect. Unfortunately, the

http://www.zweigmedia.com/utilities/lpg/index.html?lang=en website cannot handle

linear optimizations involving more than two variables, but no such restriction applies

to Calc's solvers.

There are three constraint inequalities:

x ≤ 6

y ≤ 8

z ≥ 4

The 'profit' expression to be maximized is:

P = x + y - z

The maximum P value is 10, when x == 6, y == 8, and z == 4.

Much of main() in SolverTest.java is very similar to LinearSolver.java:

// part of main() in SolverTest.java

 :

XSpreadsheet sheet = Calc.getSheet(doc, 0);

// specify the variable cells

CellAddress xPos = Calc.getCellAddress(sheet, "B1"); // x

CellAddress yPos = Calc.getCellAddress(sheet, "B2"); // y

CellAddress zPos = Calc.getCellAddress(sheet, "B3"); // z

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 27 © Andrew Davison 2017

CellAddress[] vars = new CellAddress[]{ xPos, yPos, zPos };

// only define the profit formula without inequality

Calc.setVal(sheet, "B4", "=B1+B2-B3");

CellAddress objective = Calc.getCellAddress(sheet, "B4");

// create three constraints (using the 3 variables)

SolverConstraint sc1 = Calc.makeConstraint(sheet, "B1", "<=", 6);

 // x <= 6

SolverConstraint sc2 = Calc.makeConstraint(sheet, "B2", "<=", 8);

 // y <= 8

SolverConstraint sc3 = Calc.makeConstraint(sheet, "B3", ">=", 4);

 // z >= 4

SolverConstraint[] constraints =

 new SolverConstraint[]{ sc1, sc2, sc3 };

// initialize the SCO nonlinear solver

XSolver solver = Lo.createInstanceMCF(XSolver.class,

 "com.sun.star.comp.Calc.NLPSolver.SCOSolverImpl");

solver.setDocument(doc);

solver.setObjective(objective);

solver.setVariables(vars);

solver.setConstraints(constraints);

solver.setMaximize(true);

Props.showObjProps("Solver", solver);

Props.setProperty(solver, "EnhancedSolverStatus", false);

 // switch off nonlinear dialog about current progress

// execute the solver

solver.solve();

Calc.solverReport(solver);

Only the profit formula needs to be assigned to a cell due to the simplicity of the

equation inequalities. Their constraints can use the cells containing the x, y, and z

variables rather than be defined as separate formulae.

The Solver is "com.sun.star.comp.Calc.NLPSolver.SCOSolverImpl", whose name I

found by listing the solver names with Calc.listSolvers().

The properties associated with the SCO solver are more extensive than for the linear

solvers. Props.showObjProps() reports:

Solver Properties

 AssumeNonNegative == false

 EnhancedSolverStatus == true

 GuessVariableRange == true

 LearningCycles == 2000

 LibrarySize == 210

 StagnationLimit == 70

 SwarmSize == 70

 Tolerance == 1.0E-6

 UseACRComparator == false

 UseRandomStartingPoint == false

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 28 © Andrew Davison 2017

 VariableRangeThreshold == 3.0

These can also be viewed via the Options dialog in the Calc GUI, as in Figure 11.

Figure 11. The Options Dialog for the SCO Solver.

These parameters, most of which apply to the DEPS solver as well, are explained at

https://wiki.openoffice.org/wiki/NLPSolver#Options_and_Parameters.

The correct solution reported by Calc.solverReport() is:

Solver result:

 B4 == 10.0000

Solver variables:

 B1 == 6.0000

 B2 == 8.0000

 B3 == 4.0000

4.3. A Nonlinear Problem (using DEPS and SCO)

SolverTest2.java defines a nonlinear optimization problem, so can only be solved by

the DEPS or SCO solver; I'll start with DEPS.

The problem comes from the Wikipedia page on nonlinear programming

(https://en.wikipedia.org/wiki/Nonlinear_programming). There are four constraint

inequalities:

x ≥ 0

y ≥ 0

x
2
 + y

2
 ≥ 1

x
2
 + y

2
 ≤ 2

The 'profit' expression to be maximized is:

P = x + y

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 29 © Andrew Davison 2017

The maximum P value is 2, when x == 1 and y == 1, which can be represented

graphically in Figure 12 since we're once again using only two unknowns.

Figure 12. Solution for the Nonlinear Optimization Problem.

The code in SolverTest2.java is only slightly different from the previous two

examples:

// part of main() in SolverTest2.java

 :

XSpreadsheet sheet = Calc.getSheet(doc, 0);

// specify the variable cells

CellAddress xPos = Calc.getCellAddress(sheet, "B1"); // x

CellAddress yPos = Calc.getCellAddress(sheet, "B2"); // y

CellAddress[] vars = new CellAddress[]{ xPos, yPos };

// specify profit equation

Calc.setVal(sheet, "B3", "=B1+B2"); // x + y

CellAddress objective = Calc.getCellAddress(sheet, "B3");

// set up equation formula without inequality (only one needed)

Calc.setVal(sheet, "B4", "=B1*B1 + B2*B2"); // x^2 + y^2

// create two constraints from one equation

SolverConstraint sc1 = Calc.makeConstraint(sheet, "B4", ">=", 1);

 // x^2 + y^2 >= 1

SolverConstraint sc2 = Calc.makeConstraint(sheet, "B4", "<=", 2);

 // x^2 + y^2 <= 2

SolverConstraint[] constraints = new SolverConstraint[]{ sc1, sc2 };

// initialize DEPS nonlinear solver

XSolver solver = Lo.createInstanceMCF(XSolver.class,

 "com.sun.star.sheet.Solver");

 // uses "com.sun.star.comp.Calc.NLPSolver.DEPSSolverImpl"

solver.setDocument(doc);

solver.setObjective(objective);

solver.setVariables(vars);

solver.setConstraints(constraints);

solver.setMaximize(true);

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 30 © Andrew Davison 2017

Props.showObjProps("Solver", solver);

Props.setProperty(solver, "EnhancedSolverStatus", false);

 // switch off nonlinear dialog about current progress

Props.setProperty(solver, "AssumeNonNegative", true);

 // restrict search to the top-right quadrant of graph

// execute the solver; print the results

solver.solve();

Calc.solverReport(solver);

Only one inequality equation is defined:

Calc.setVal(sheet, "B4", "=B1*B1 + B2*B2"); // x^2 + y^2

because it can be used twice to define the nonlinear constraints:

SolverConstraint sc1 = Calc.makeConstraint(sheet, "B4", ">=", 1);

 // x^2 + y^2 >= 1

SolverConstraint sc2 = Calc.makeConstraint(sheet, "B4", "<=", 2);

 // x^2 + y^2 <= 2

No constraints are defined for x >= 0 and y >= 0. Instead, the solver's

"AssumeNonNegative" property is set to true, which achieves the same thing.

The DEPS solver is used by default when a nonlinear optimization needs to be solved,

so the solver is instantiated using the general Solver service name:

XSolver solver = Lo.createInstanceMCF(XSolver.class,

 "com.sun.star.sheet.Solver");

Alternatively, it's possible to use the DEPS service name:

"com.sun.star.comp.Calc.NLPSolver.DEPSSolverImpl".

The results printed by Calc.solverReport() are:

Solver result:

 B3 == 2.0000

Solver variables:

 B1 == 1.0001

 B2 == 0.9999

If DEPS is replaced by the SCO solver:

XSolver solver = Lo.createInstanceMCF(XSolver.class,

 "com.sun.star.comp.Calc.NLPSolver.SCOSolverImpl");

The printed result is slightly more accurate:

Solver result:

 B3 == 2.0000

Solver variables:

 B1 == 1.0000

 B2 == 1.0000

Java LibreOffice Programming. Chapter 27. Funcs & Analysis Draft #2 (20th March 2017)

 31 © Andrew Davison 2017

but it takes a little bit longer to return.

